Fall, 2017 Programming for Business Computing 1

PROGRAMMING FOR BUSINESS
COMPUTING
ﬁ::lﬁ'_‘_'_*m_tnin

Strings

Hsin-Min Lu
=15

BAREEAR



Programming for Business Computing 2

The String Data Type

- Processing text data is an important task for PC users.

- Think about the time you spent on using word processors such as
MS words.

- A large portion of online interactions are posting text messages.
- In Python, text is represented in by the string data type.

- A string is a sequence of characters enclosed within
quotation marks (") or apostrophes (').



Programming for Business Computing
The String Data Type (Cont'd.)

«>>> strl="Hello"

«>>> str2="ntu’

- >>> print(strl, str2)
Hello ntu

- >>> type(strl)
-<class 'str'»>

- >>> type(str2)
-<class 'str'>

{}

h g




Programming for Business Computing 4

The String Data Type (Cont'd.)

- We have encountered the input() function before.

- Input() takes user input string and return it to the
caller.

>>> aname = input(“Please enter your name:")
Please enter your name:>? Diana

>>> print(“Hello", aname)

Hello Diana

- A string Is a sequence of characters.

- Access the individual characters in a string through
iIndexing.
- From left to right.
- Starting from 0.



Programming for Business Computing 5
String Indexing

b u I | m I a
0 1 2 3 4 5 6
>>> strl = "bulimia”®
>>> strl[e]
L] b L]
>>> strl[1]
L] u L
>>> strl[2] Recall the way to invoke a function is

1] function_name() o



Programming for Business Computing 6
String Indexing (Cont'd.)

b u I i m i a

0O 1 2 3 4 5 6

- In a string of n characters, the last character is
at position n-1.

- Index from the right to left using negative
INaexes. ., strl[-1]

a
>>> strl[-2]

Iil

>>> strl[-3] 18
Iml




Programming for Business Computing 7

Slicing Strings

- Slicing: access a contiguous sequence of characters from
a string.

- Syntax: <string>[<start>:<end>]
- Both start and end are ints

- Beginning at position start and runs up to but doesn’t
Include the position end. >>> str1[3:5]

im

>>> strl[2:6]
b | u i | m| i | a 'limi’

>>> strl[2:8]
'limia’

>>> strl[2:10]
'limia’

>>> strl[2:]
'limia’ 0
>>> strl[:5]
"bulim’




Programming for Business Computing 8

Some String Operations

- Can we put two strings together into a longer string?
- Concatenation “glues” two strings together (+).

- Repetition builds up a string by multiple concatenations of
a string with itself (*).

>>> "spam" + "eggs"

'spameggs'’

>>> "Spam" + "And" + "Eggs"
'SpamAndEggs '

>>> 3 * "spam"

'spamspamspam’

>>> "spam" * 5
'Spamspamspamspamspam’

>>> (3 * "spam") + ("eggs" * 5)
'spamspamspameggseggseggseggseggs ¢
>>> len("career" o
6



Programming for Business Computing
The String Data Type

- The function len will return the length of a string.
al="career"
print (len (al))

for ch in al:
print ("Get a character:", ch)

- Output:

6

Get a character: c
Get a character: a
Get a character: r
Get a character: e
Get a character: e
Get a character: r



Programming for Business Computing

String Operations

Operator Meaning

+ Concatenation

* Repetition
<string>[] Indexing
<string>[:] Slicing
len(<string>) Length

for <var> in <string> Iteration through characters

10



Fall, 2017 Programming for Business Computing

Strings, Lists, and Sequences

- Strings and lists are quite similar.
- Both are a special kind of sequence.

- There are some common operations that can be
applied to both types.

- Some examples:
- >>> [1,2] + [3,4]
- [1, 2, 3, 4]
« >>> [1,2]*3
- [1, 2, 1, 2, 1, 2]
- >>> grades = ['A', 'B', 'C', 'D', 'F']
« >>> grades[9]
A
« >>> grades[2:4]
- ['C", 'D"]
- >>> len(grades)
« 5




Fall, 2017 Programming for Business Computing 12

Strings, Lists, and Sequences

- Strings are always sequences of characters, but lists can
be sequences of arbitrary values.

- Lists can have numbers, strings, or both!
myList = [1, "Spam ", 4, "U"]

194



Fall, 2017 Programming for Business Computing

Mutable and Immutable, Again

- Lists are mutable, =»they can be changed.

- Strings can not be changed.
>>> mylList = [34, 26, 15, 10]
>>> myList[2]

15

>>> myList[2] = ©

>>> myList

[34, 26, 0, 10]

>>> myString = "Hello World"
>>> myString[2]

L

>>> myString[2] = "p"

Traceback (most recent call last):
File "<pyshell#16>", line 1, in -toplevel-
myString[2] = "p"
TypeError: object doesn't support item assignment

13



Fall, 2017 Programming for Business Computing 14

Example: Converting Date Format

- Two commonly used date format is yyyymmdd and
ddmmyy.

- yyyymmdd: 20141203, 19990212
- ddmmyy: 03122014, 12021999

def ymd2dmy (dstr):
"""Convert date format from ymd to dmy
F.g. 20150312 to 12032015"""
yl = dstr[0:4]
ml = dstr[4:6]
dl = dstr[6:8]
return dl + ml + yl



Fall, 2017 Programming for Business Computing 15

Converting Date Format

def ymdZ2dmy (dstr):

- Output: yl = dstr[0:4]

" " ml = dstr[4:0]

>>> dl1 = "20150512 4l = dstr[6:8]
55> d2 = ymd2dmy(d1) return dl + ml + vyl

>>> print("Converted date is", d2)

Converted date is 12052015

>>>

>>> dl = "20171123"

>>> d2 = ymd2dmy(dl)

>>> print("Converted date is", d2)

Converted date is 23112017 o



Programming for Business Computing 16

Example: Validating Taiwan ID String

- Taiwan ID number of a string of length 10.

- First digit must be a upper case letter (between Ato 2).
- Second digit must be either 1 or 2.

- The remaining digits are numbers.

- Example ID string: A123456789.

- Use a simple checksum rule to validate whether an ID is
valid or not.

- According to this rule, A123456789 is valid, but
A123456788 Is not.

- We are going to see how to validate Taiwan ID. £



Programming for Business Computing 17

Length and the First Digit

- Use len() to check length
>>> strl1="A123456789"

>>> len(strl)

10

- How to validate the first digit?

- As mentioned before, a string is a sequence of characters.

- Each character is stored using some sort of internal
encoding.

- Traditional, English characters are stored using the ASCI|
system (American Standard Code for Information

Interchange).



Programming for Business Computing 18

ASCI| System

-0 — 127 are used to represent the characters
typically found on American keyboards.
- 65 -90 are “A” —“2”
- 97 -122 are “a” — “z2”
- 48 — 57 are “0” — “9”
- The others are punctuation and control codes

used to coordinate the sending and receiving of
information. £




Fall, 2017 Programming for Business Computing 19

Finding Internal Codes

- The ord function returns the numeric (ordinal)
code of a single character.

- The chr function converts a numeric code to the
corresponding character.

>>> ord("A")

65

>>> ord("a")

97

>>> chr(97)

-

>>> chr(65)

"

194




Programming for Business Computing 20

Checking the First Digit

- Note that the internal codes are arranged so that upper
case letters are occupied in a continuous chunk of code

range
-A> 65 B->66,C>67,...,Z-> 90.
- We can use this characteristic to validate the first digit.

- The first internal encoding of the first digit need to be
between 65 and 90.



Programming for Business Computing 21
Checking the First Digit

>>> idstr "A123456789"
>>> codel = ord(idstr[9])
>>> if (codel < 65 or codel > 90):
print("not valid")
. else:

print("valid")

valid

>>>

>>> idstr = "b123456789"
>>> codel = ord(idstr[@9])

>>> if (codel < 65 or codel > 90):
print("not valid")
. else:
print("valid")

not valid f}



Programming for Business Computing 22

Validation Rules for Taiwan ID

- 1. Map the first digit to a two-digit number.
-E.g.A>10,B>11,C>12,D>13,..Z> 33
- Note: not in the order of Ato Z.

- 2. Attach the two-digit number to the remaining 9-digit ID.

- 3. Compute a checksum by multiplying the digit at each
position to a weight: [1, 9,8, 7,6, 5,4, 3, 2,1, 1]

- 4. Sum over all results, divide the sum by 10 and compute
the remainder.

- 5. If the remainder is 0, then it is valid. Otherwise, this is a
invalid ID.



Mapping Table

H 17 V 29
I 34 W 32
J 18 X 30
K 19 Y 31
L 20 Z 33

M 21

N 22




Fall, 2017 Programming for Business Computing 24

Example

- ID: A123456789
- Convert ‘A’ to 10’
- New ID: 10123456789
- Apply the weight: [1,9,8,7,6,5,4, 3, 2,1, 1]
- =» 1*1 + 0*9 + 1*8 + 2*7 + 3*6 +
4*5 + 5*4 + 6*3 + 7*2 + 8*1 + 9*1 = 130
- 130/ 10 =13, remainder =0
- =» Valid ID.



Fall, 2017 Programming for Business Computing 25

The Validation Process in Python

- Mapping the first letter to a two-digit number
>>> 1dstr="A123456789"

>>> codel = ord(idstr[0])

>>> cmap = [10, 11, 12, 13, 14, 15, 16, 17, \
34, 18, 19, 20, 21, 22, 35, 23, 24, \
25, 26, 27, 28, 29, 32, 30, 31, 33]

>>> numl = cmap[codel - 65]

>>> newid = str(numl) + idstr[1:]

>>> print("newid=", newid)

newid= 10123456789 o



Programming for Business Computing 26

Mapping the First Digit

- cmap is a list that contains 26 elements

- The first element is for letter A, the second element is for
letter B, and so on.

>>> codel = ord(idstr[O])

- = codel is the ASCII code of the first digit
>>> numl = cmap[codel - 65]

- =» numl is O for A, 1 for B, and so on
«>>> newid = str(numl) + idstr[1:]

- = Concatenate the two-digit number with the remaining

ID.
e;



Fall, 2017 Programming for Business Computing 27

Compute the Checksum

>>> weight = [1, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1]
>>> checksum = ©
>>> for 1 in range(0, 11):

checksum += weight[i] * int(newid[i])

>>> remainder = checksum 7% 16
>>> print("checksum=", checksum)
checksum= 130

>>> print("remainder=", remainder)
remainder= 0 0]



Programming for Business Computing 28
Putting Everything Together

- Create a function that return True if the ID is valid,
return False otherwise.

def verify twid(idstr):
"""Veri1fy Taiwan ID Number.
Return True i1f wvalid,; False otherwise"""
#check length
if len(idstr) !'= 10:
return False
#check first letter
codel = ord(idstr[0])
if (codel < 65 or codel > 90):
return False
#check the remaining letters
for i in range(1,10):
code? = ord(idstr[i])
if (code?2 < 48 or code?2 > 57):
return False




Fall, 2017 Programming for Business Computing 29

def verify twid(idstr):

21,

#... Continue from previous slide ..
#check the second character
code?2 = ord(idstr[1])
if (code?2 < 49 or code2 > 50):
return False
fconvert first English character to two-digit number.

cmap = [10, 11, 12, 13, 14, 15, 1le, 17, 34, 18, 19, 20,
22, 35, 23, 24, 25, 2¢, 27, 28, 29, 32, 30, 31, 33]

numl = cmap[codel - 65]
newid = str(numl) + idstr[1l:]
weight = [1, 9, 8, 7, ©, 5, 4, 3, 2, 1, 1]
checksum = 0
for i in range(0, 11):
checksum += weight[i] * int(newid[i])
if checksum % 10 ==
return True
else:
return False



Programming for Business Computing 30
verify twid() in Action

>>> 1d1="A123456789"

>>> print(verify twid(idl))
True

>>> verify twid("B123456789")
False

>>> verify twid("C999")

False

>>> verify twid("123999")
False

>>> verify twid("Z199999999")
False

>>> verify twid("Z199999996")
True




Programming for Business Computing 31

HZPythonzE 3 X

» Python o] LGB X
- BRYIE?
- B!

- When the computer systems started to become popular in
the 1960s, most systems used ASCII encoding.

- ASCII, however, cannot handle eastern languages
- PN~ HX ~ BN E
- Why? A character is 8 bit long, can encode at most 28 — 1 = 255
unique characters

- BERDI N ERFE3,00000 !
- AR EERE?
- =» How about use 2 characters to encode a Chinese character?

- This will allow as to encode 21® — 1 = 65535 characters.
- Enough? | guess! & o




Programming for Business Computing 32

HZPythonzE 3 X

- Double-byte (2 bytes = 16 bits) character sounds good.

- But there are a few complications.
- BEXREME (F2 - 88)Z8BBXRNREE - LIEREREA
BRI -
- RPEREIS P EE (1B 22 Bt = 1E)
- HABEZEF - REMBEPFIXEHE  XAZR—1X -
- 1983F EMl [ FREE R/ AAPNERIISPIERETH N
BN - TEABIg-5 (KAMHE)
- BERAKABNEEEETIZ L] M — /X - Bight B &
N ARSI SE FRIRAE o
- BighmP N FR(BE - HB)E—(AR/EZIRBGIZE
- RIERIfERIGB2312 & £




Programming for Business Computing 33

HZPythonzE 3 X

- HEASCIEMEN EHSEE ARSI E 2 EEE -
- Unicode (—BI3EER4 %) & #EREEE SR - FHREE

R A—N X Fmbs -
19925 /X HI#£20,90250 H

: BE N F o
- BRI KRB BI1ESE 248 <& Unicode .
, , : , IPhone, etc.

- Windows, Linux, Mac, Andriod

- = B HUnicode R IEH AR

viE WNCODe

- UTF-8 (Linux¥83%): one, two, or three bytes

for a character.

- UTF-16 (Microsoft WindowsT85&

). one or two bytes for a character.

- You should use UTF-8 in most cases. £+



Programming for Business Computing 34

Python Speaks Unicode

- Python string support Unicode.

- How to use Unicode (Chinese characters) in your Python
scripts.

- 1A BEEFPythonRE D 21T E 4R S

- H#-*- codlng utf8 -*-

- BE
- #!/usr/bin/python
- # -*- coding: utf8 -*-
- (S _17)

9



Programming for Business Computing 35
Make Sure Your Text Editor Use UTF-8

- In Notepad++: Settings - Preferences - New Document
- Select UTF-8, and check “Apply to opened ANSI files”

Preferences

General

Format (Line ending) Encoding
New Document

Default Directory O ANSI
Recent Files History @ Windows [CR LF}

ot ®urrs
Highlghting () Unist (LF) [] Apply to opened ANSI files
Back .

e () Macintosh (CR) () UTF-8 with BOMN

() UCS-2 Big Endian with BOM

O UCS-2 Little Endian with BOM

Default language : Mormal Text O



Fall, 2017 Programming for Business Computing 36

PR

- Try the following simple python script.
# -*- coding: utf8 -*-

msg=u " 7 AL
print(msg)

- If you see error message like this, you need to fix the encoding
of your file:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "testcmsgl.py", line 2 0

SyntaxError: 'utf8' codec can't decode byte 0xa4 in position
©: invalid start byte



Fall, 2017 Programming for Business Computing 37

PR

- MRIRAUERAZUTF-84R45...

- If you are using Notepad++, goto
“‘Encoding” = “Convert to UTF-8" =»
save the file

- Try again! You will see:

0 SRR

- Need to be very careful about your
Chinese encoding &*

e K:\Users\hmlu\svn_drive2\teach
File Edit 5earch View | Encoding

Lanc

Encode in AMSI

Encode in UTF-8

Encode in UTF-8-BOM

Encode in UC5-2 BE BOM
Encode in UCS-2 LE BOM
Character sets r

Convert to ANSI

:Convert to UTF-8

Convert to UTF-8-BOM
Convert to UCS-2 BE BOM
Convert to UCS-2 LE EOM




Fall, 2017 Programming for Business Computing 38

PR

msg=u" AL

- ZERIEMNuRREEZEUnicodeZF & -
1577 T EE R A Unicode -

IUPython FH%E = HY A%

- Python Ver. 3.X o] DIARu - 1BPython Ver. 2. X¥x<700 - 8l

EEF%EFencodingRIE -
- BEEEERF
e # —*- coding: utf8 -—-*-
« msg=u"' B 3AIE "
cprint ("msg=", msQq)
cprint("len (msg)=", len(msg))
« msg2="F Al
cprint ("msgZ2=", msg2)
cprint("len (msg2)=", len(msg2l))

Output:

msg= PRI
len(msg)= 4
msg2= P3G
len(msg2)= 4 &



Fall, 2017 Programming for Business Computing 39

chr and ord

- We are look at the internal
encoding of characters

>>> chr(65) chi(i) returns the character

‘A’ with internal encoding i
>>> ord('A") « ord(str) returns the internal
65 encoding of str

>>> ord('fE")

40232

>>> chr(40232)
IEE%I



Programming for Business Computing 40

Getting the internal code of a message

- Suppose you want to pass a secret message to you pal but
you do not want other people to easily know what the

message Is.
- You can to convert the text into internal encoding

# —-*- coding: utf8 —-*-
msg='M CTtRKREEZR"
for achr in msg:
print (ord(achr), end= " ")
print ()

- Here is the output:
- 26202 19978 19971 40670 27700 28304 26143 24052 20811

35211
S:




Fall, 2017 Programming for Business Computing 41

Getting the internal code of a message

- The code starts with a declaration on the encoding of the
program.

- The for loop takes a character one time, and pass it to
ord()

- Note the print line:
print (ord(achr), end= " ")

- What is the purpose of end= " " ?24*



Programming for Business Computing 42

| want to know what this message is about

- Now you pal get this message, he or she wants to know what
this is about

+ 26202 19978 19971 40670 27700 28304 26143 24052 20811
35211

- Start with a string that contain the code, and split the string by
space

code='26202 19978 19971 40670 27700 28304 26143 24052
20811 352171°

tmpcode = code.split(' ')

- Now the tmpcode contains a list of strings, each a code for a
character

>>> tmpcode
['26202', '19978', '19971', '40670', '27700', '28304', '26143',
'24052', '20811', '35211"] &* o,



Programming for Business Computing 43

| want to know what this message is about

- We can retrieve the code of each character using its index:
>>> tmpcode]0]

'26202'

>>> tmpcode|3]

'40670

- Note that each element is a string.

- We want to use chr() to convert the code into message, one
character a time.

- However, chr() takes int as input.

- We can convert string to int by the int() function.
>>> nt(tmpcode[3])

40670 8



Programming for Business Computing 44

| want to know what this message is about

- After getting a character, we need to concatenate them
together.

- S0 we start with a empty unicode string
- Concatenate the first character to msq:
msg = msg + chr(int(tmpcode[0]))

- Another way to write this line:

msg += chr(int(tmpcode[0]))

194



Fall, 2017 Programming for Business Computing 45

| want to know what this message is about

- Putting everything together
code="'26202 19978 19971 40670 27700 28304 26143 24052
20811 35211

tmpcode = code.split ("' ")

msg = ""
for acode in tmpcode:

msg += chr(int (acode))
print ("msg =", msqg)

- The output Is:
msg = & EtRIKEREEEZR

194



Fall, 2017 Programming for Business Computing 46

Common String Operations

- capitalize(): Capitalize the first character.

- title(): Capitalize the first character of each word.

- upper(): Convert all characters to uppercase.

- replace(old, new): Replace the occurrences of old with new.
- Examples:

>>> s = "athletes could not join the parade”
>>> print(s.capitalize())

Athletes could not join the parade

>>> print(s.title())

Athletes Could Not Join The Parade

>>> print(s.upper())

ATHLETES COULD NOT JOIN THE PARADE

>>> print(s.replace("athletes”, "guests"))
guests could not join the parade




Programming for Business Computing 47
Common String Operations (Cont'd.)

- See Python 3 Document for a list of complete methods.
(Section 4.7.1)

- https://docs.python.org/3/library/stdtypes.html#string-
methods

>>> #count: Return the number of non-overlapping occurrences

>>> s2 = "media and mania" . .
>>> #1n operation

>>> print(s2.count("ia")) [ . 1atter - " ABCDEFGHIJKLMNOPQRS TUVIWXYZ"

2 >>> "A'" in uletter
True
>>> "z"'" in uletter
False
>>> "AD' in uletter
False
>>> "MN' in uletter 1

True


https://docs.python.org/3/library/stdtypes.html#string-methods

Fall, 2017 Programming for Business Computing 48

Common String Operations (Cont'd.)

« >>> #find: Return the lLowest index in the string where
the given substring is found

« >>> s3 = "02-33661184"

e >>> s3.find('-")

o 2

« >>>

« >>> #1s numeric characters
« >>> s4 = "1235"

« >>> s4.isnumeric()

 True

« >»> s5 = "1235,2"

- >>> s5.isnumeric()

. False 1S



Fall, 2017 Programming for Business Computing 49

Common String Operations (Cont'd.)

>>> #1s upper characters

>>> s6 = "HI"

>>> s6.1isupper()

True

>>> s7 = "Hi"

>>> s7.isupper()

False

>>>

>>> #split a string by a given separator string.
>>> s8 = "Not a useful tool."

>>> print(s8.split(" "))
['Not', "a’, "useful®, "tool.’]
>>> “



Fall, 2017 Programming for Business Computing 50

Common String Operations (Cont'd.)

>>> #remove extra spaces
>>> s9 = " many spalce !
>>> print(s9.strip())

many spalce

>>>

>>> #remove given characters.

>>> 'www.example.com'.strip('cmowz.")

‘example’



Programming for Business Computing 51

Formatting Strings

- We often need to provide output in a specific format.

- Give “pretty print”

- For example, output gasoline price using a specific format
($23.4).

- Output stock price with two decimal places (e.g., 32.12).

- Add extra “0” upfront (e.g. ID: 000325).

- Generating reports following a specific format:
- Name: Joe Smith Phone: ©2-12345543
- First Contact: 2006-12-32 Age: 40



Programming for Business Computing 52
String Formatting

- Consider this example: We have a variable that store the
price of a product, and we want to output the price with
only two decimal places:

>>> prc=13.8/623
>>> print("Current price: %0.2f" % prc)
Current price: 13.88

- For numbers, % means the remainder operation.
- For strings, % is a string formatting operator. £+



Programming for Business Computing 53
String Formatting

- The formatting specifier has the form:
%<width>.<precision><type-char>

- Type-char can be decimal, float, string (decimal is base-
10 ints)

- <width> and <precision> are optional.

- <width> tells us how many spaces to use to display the
value. 0 means to use as much space as necessatry.

>>> prc=13.8/623
>>> print("Current price: %0.2f" % prc)
Current price: 13.88



Programming for Business Computing 54

String Formatting

- If the given <width> is not enough, Python will
expand the space until the result fits.

- <precision>: number of places to display after the
decimal (for floating point numbers only).

- 9%0.2f. use as much space as necessary and two
decimal places to display a floating point number.

{}

n




String Formatting

>>> "AsEEBLGE, TENECEIHYdR - FEEEE - " % (" KRE", 55)
' ERIEEERAGT, BENECAISSK » EEERE o
>>> "HREE  A5d[MRI RIS R5] % 7

PREET 7[Rz =S R5]
>>> "REEY . Zlod[ffu RE 10l % 99
PREE o[ NI =/E fy1e] "

>>> FERE : Z10. 5[ MR RIE 10 - I/ NIRRT % 3.1415926
VAR 3.14159[ {7 R R10 - ffir/ NG

>>> FERE - Fo. SFIMNIRE RO - T/ NERL T % 3.1415926
FEREL © 3.14159 [ MRfiI RIE R0 o Ffir/NECRE

>>> "ChERWA{ERRE - Z4f Ed%e.20f' % (3.14, 3.14)
"EEE R {EFR S - 3.140000 Eil 3.14000000000000012434"



Programming for Business Computing 56

String Formatting

- Output values are right-justified by default (if the
width is wider than needed)

- To left-justify use a negative width (e.g., %-10.3f)

- You may see random digits if showing a float with
long decimal places. This is caused by internal
representation for float.

{}

n




Fall, 2017 Programming for Business Computing 57

Concatenate Strings and Floats

- You can use “+” to concatenate strings.

- Be very careful if you are concatenate string and other
data types (e.g. float).

>>> value = 3.14
>>> print ("The value is" + value + ".")
Traceback (most recent call last):

File "<input>", line 1, in <module>

TypeError: must be str, not float

If value is an int or float, Python thinks the + is a mathematical operation,
not concatenation, and “.” is not a number! £t



Programming for Business Computing

THANK YOU!

Questions?



